skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hagen-Thorn, Vladimir A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract X-ray polarization is a unique new probe of the particle acceleration in astrophysical jets made possible through the Imaging X-ray Polarimetry Explorer. Here we report on the first dense X-ray polarization monitoring campaign on the blazar Mrk 421. Our observations were accompanied by an even denser radio and optical polarization campaign. We find significant short-timescale variability in both X-ray polarization degree and angle, including an ∼90° angle rotation about the jet axis. We attribute this to random variations of the magnetic field, consistent with the presence of turbulence but also unlikely to be explained by turbulence alone. At the same time, the degree of lower-energy polarization is significantly lower and shows no more than mild variability. Our campaign provides further evidence for a scenario in which energy-stratified shock-acceleration of relativistic electrons, combined with a turbulent magnetic field, is responsible for optical to X-ray synchrotron emission in blazar jets. 
    more » « less
    Free, publicly-accessible full text available June 20, 2026
  2. Abstract Blazars, supermassive black hole systems with highly relativistic jets aligned with the line of sight, are the most powerful long-lived emitters of electromagnetic emission in the Universe. We report here on a radio-to-gamma-ray multiwavelength campaign on the blazar BL Lacertae with unprecedented polarimetric coverage from radio to X-ray wavelengths. The observations caught an extraordinary event on 2023 November 10–18, when the degree of linear polarization of optical synchrotron radiation reached a record value of 47.5%. In stark contrast, the Imaging X-ray Polarimetry Explorer found that the X-ray (Compton scattering or hadron-induced) emission was polarized at less than 7.4% (3σconfidence level). We argue here that this observational result rules out a hadronic origin of the high-energy emission and strongly favors a leptonic (Compton scattering) origin, thereby breaking the degeneracy between hadronic and leptonic emission models for BL Lacertae and demonstrating the power of multiwavelength polarimetry to address this question. Furthermore, the multiwavelength flux and polarization variability, featuring an extremely prominent rise and decay of the optical polarization degree, is interpreted for the first time by the relaxation of a magnetic “spring” embedded in the newly injected plasma. This suggests that the plasma jet can maintain a predominant toroidal magnetic field component parsecs away from the central engine. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026